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The time integration of the equations of incompressible flow using (a) the velocity–
pressure formulation in conjunction with the consistent or simplified pressure Poisson
equation, (b) a projection method, or (c) a pressure–correction method, requires solving a
Poisson equation for the pressure or for an auxiliary projection function used to approximate
the pressure subject to the Neumann boundary condition over the solid boundaries of the
flow. In the case of the pressure Poisson equation, an inhomogeneous Neumann boundary
condition arises by projecting the Navier–Stokes equation normal to the boundaries, and then
using the specified boundary conditions for the velocity to simplify the viscous and inertial
contributions [1]. In the case of projection or pressure–correction methods, homogeneous or
inhomogeneous Neumann boundary conditions for the projection function arise according
to the selected boundary conditions for the intermediate velocity computed by integrating
in time the Navier–Stokes equation in the absence of, or using extrapolated values for, the
pressure gradient [2].

Now, it is well known that when the Neumann boundary condition is required over all
external boundaries of an internal solution domain, the Poisson equation

∇2f = g (1)

has a solution for the requisite functionf only when the compatibility condition, requiring
that the integral of the source functiong over the domain of solution be equal to the net flow
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rate expressed by the boundary integral of the normal derivative off , is satisfied. In the
case of a two-dimensional solution domain in thexyplane, denoted byD, the compatibility
condition requires ∫

D
g(x, y) dx dy=

∫
C

q dl, (2)

whereC is the boundary ofD, q ≡ ∂ f/∂n = n · ∇ f is the specified normal derivative,n
is the unit vector normal toC pointing outward, anddl is the differential arc length along
C. When the compatibility condition (2) is fulfilled, the Poisson equation (1) has a solution
that can be determined up to an arbitrary constant. When the compatibility condition is not
fulfilled, a solution cannot be found.

The spatial discretization of (1) by finite-difference, finite-volume, and some implemen-
tations of the finite-element method, replaces the Poisson equation with a linear algebraic
system for the vectorw,

A · w = b, (3)

where the right-hand sideb incorporates the source termg and the specified Neumann
boundary conditions. If the numerical discretization is consistent, the matrixA is singular:
a vectoru with equal elements is an eigenvector ofA corresponding to the null eigenvalue,
A · u = 0. For system (3) to have a solution, the right-hand side must be orthogonal to the
eigenvector of the transpose ofA corresponding to the null eigenvalue, denoted byv and
satisfyingvT · A = 0, yielding the solvability condition

vT · b = 0. (4)

Since the matrixA is generally nonsymmetric, the eigenvectorsu andv are not necessarily
identical.1

The solvability condition (4) is, in fact, the discrete implementation of the compatibility
condition (2). In this light, the left-hand side of (4) is recognized as the implementation of
a numerical integration quadrature pertinent to the areal and line integrals on the left- and
right-hand side of (2). The particular nature of this quadrature depends on the structure of
the matrixA which is determined by the method selected to discretize the Laplacian on the
right-hand side of (1). This observation reveals an intimate relation between a numerical
differention matrix and the singular eigenvector of its transpose with reference to numerical
integration.

In practice, because of discretization error, the solvability condition is not always fulfilled,
and the linear system (3) does not always have a solution. In the majority of fluid dynamics
applications, this essential difficulty is overlooked, and a solution is found by iteration using,
for example, the Jacobi, the Gauss–Siedel, or the SOR method. The iterations amount to
stepping in time on the borderline of numerical stability based on the unsteady diffusion–
reaction equation that emerges by adding the time derivative∂ f/∂t to the right-hand side of
(1). It is clear then that if the compatibility condition is not fulfilled, a convergent solution
corresponding to the steady state cannot be found. In most implementations, only a few
iterations are carried out, and a solution of unknown accuracy is obtained, as discussed by
de Foy and Dawes [3].

1 The Galerkin finite-element method and the finite-difference method implemented with biased inward differ-
ences give a symmetric coefficient matrix at the penalty of reduced accuracy.
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The difficulty has been noted and addressed by two groups of authors. Abdallah,
Sotiropoulos, and Tafti developed consistent finite-difference discretizations for Cartesian
and curvilinear collocated (nonstaggered) grids that ensure the automatic satisfaction of the
compatibility condition while producing nonoscillatory solutions that do not suffer from
odd–even coupling [4–7]. de Foy and Dawes [3] recently developed a consistent discretiza-
tion for finite-volume unstructured grids. Although these methods undoubtedly represent
the optimal approach, the additional amount of necessary work, the possible introduction
of numerical compressibility, and some loss of generality are practical disadvantages.

A second group of authors, dating back to Briley (1974) [8] opted to modify the source
term of the Poisson equation, but not necessarily the boundary conditions, thereby replacing
the linear system (3) with the modified system

A · w = b− ε c, (5)

wherec is a suitable vector normalized so thatcT · c= 1, and the constantε on the right-
hand side is adjusted to ensure the satisfaction of the solvability condition [9–11]. When
the adjoint eigenvectorv is available, we may enforce the solvability condition to compute
ε = (vT · b)/(vT · c). In practice, the eigenvectorv may be either computed directly or
compiled by inspection in terms of integration quadrature weights. A practical method of
computingε without reference tov is discussed by Pozrikidis [12]. When the linear system
(3) is solved by iteration, the regularization embodied by (5) may be implemented simply
by shifting all components of the solution vectorw by the same amount after each iteration,
so that one arbitrary component is anchored at a fixed value.

In this note, we argue that the optimal way of regularizing the linear system (3) is by
projecting the right-hand side onto the orthogonal complement of the adjoint eigenvector
v, thereby obtaining the regularized system

A · w = (I − vvT ) · b, (6)

wherevT · v = 1. By construction then, the solvability condition is fulfilled. Comparing
(5) and (6), we identify the otherwise arbitrary vectorc with v, and the constantε with the
projectionvT · b. The regularization expressed by (6) amounts to uniformly perturbing the
source term in the Poisson equation as well as the boundary conditions in a specific way.

To investigate the performance of the method based on (6), we consider the solution of
Poisson’s equation in a rectangular domain confined between 0< x < a and 0< y < b,
where the source term is given by

g(x, y) = − 1

a2
e−(x+y)/δ + δ2

a3b

(
1− e−a/δ

) (
1− e−b/δ

)
, (7)

whereδ is a specified length, and the homogeneous Neumann condition is required around
the sides. The source termg was designed so that the functionf is dimensionless, and the in-
tegral ofg over the solution domain vanishes so that the compatibility condition is satisfied.

The solution domain was discretized into a uniformN × M Cartesian grid, and the
Laplacian was approximated using the five-point centered difference formula. In one imple-
mentation, termed I1, phantom nodes are introduced to approximate the Neumann boundary
condition using centered differences, and the Poisson equation is applied at both the inte-
rior and boundary nodes. In a second implementation, termed I2, the Neumann boundary
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condition is implemented using second-order, one-sided differences biased toward the in-
terior, and the Poisson equation is applied only at the interior nodes. In both cases, the
difference equations expressing the Neumann boundary condition are combined with the
finite-difference approximation of the Laplacian at the boundary or near-boundary nodes
to produce a modified five-point formula and a suitable right-hand side. The matrixA is
nonsymmetric in both implementations.

To simplify the nomenclature, we identify regularization done with uniform perturbation
in the source term alone as R1, and regularization done withc= v as R2. Computations
showed that whenN = M = 16, δ = a, anda = b, the projection distanceε for cases
I1-R1 and I1-R2 is, respectively, equal to−1.728× 10−5 and−1.678× 10−5. The corre-
sponding values for cases I2-R1 and I2-R2 are 7.00× 10−5 and 6.83× 10−5. These results
confirm that regularization R2 minimizes the projection distanceε, and may therefore be
endowed with the qualifier “optimal.” Figure 1(a) shows the solution obtained with method

FIG. 1. (a) Solution of the Poisson–Neumann problem discussed in the text. (b) Effect of regularization on
the convergence of the Gauss–Siedel iterations; the thick lines are for discretization I1, and the thin lines are for
discretization I2; the solid, dashed, and long-dashed lines correspond, respectively, to no-regularization, R1, and
R2; the dashed and long-dashed lines are virtually indistinguishable.
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I1-R2 for δ = 0.5a, anda = b. The corresponding solution obtained with R1 is virtually
indistinguishable.

To illustrate the effect of regularization on the convergence of an iterative method for
solving the Poisson equation, in Fig. 1(b) we plot the maximum correction inf against

FIG. 2. (a) Instantaneous streamline pattern of flow in a square cavity driven by a translating lid with sinusoidal
velocity distribution at Reynolds numberRe= 1.0; (b) corresponding distribution of the projection function
approximating the pressure. (c) Effect of regularization on the convergence of Gauss–Siedel iterations; the solid,
dashed, and long-dashed lines correspond, respectively, to no-regularization, regularization R1, and regularization
R2; the dashed and long-dashed lines are virtually indistinguishable.
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the number of iterations on a linear-log scale corresponding to Fig. 1(a). The updates
are done using the Gauss–Siedel method starting from the null initial state. Note that the
iterations rely on the Neumann boundary conditions implemented in the finite-difference
matrix for convergence. The thick lines in Fig. 1(b) correspond to discretization I1, and
the thin lines correspond to discretization I2; the solid, dashed, and long-dashed lines
correspond, respectively, to no-regularization, regularization R1, and regularization R2; note
that the dashed and long-dashed lines are virtually indistinguishable. The results illustrate
the divergence of the iterations in the absence of regularization, and reveal nearly identical
performances for R1 and R2.

To further illustrate the performance of the method, we consider flow in a square cavity
driven by a moving lid with a sinusoidal velocity distribution at Reynolds numberRe=
U L/ν = 1, whereU is the maximum lid velocity occurring at the mid-plane,L is the
vcavity side length, andν is the kinematic viscosity. The evolution of the flow is computed
using a projection method on a nonstaggered grid, with the convection–diffusion steps
treated implicitly by the Crank–Nicolson method. The projection function is computed by
solving the Poisson equation with homogeneous Neumann boundary conditions over the
cavity walls using implementation I1 [12]. The numerical method is discussed in detail
in [13]. Figure 2(a) shows the instantaneous velocity vector field at dimensionless time
t̂ ≡ tU/L = 0.4825, and Fig. 2(b) shows the corresponding distribution of the projection
function which is nearly identical to the pressure. Regularization R1 requiresε = −0.00560,
and regularization R2 requires the lower valueε = −0.00544, thus introducing a lesser
amount of numerical compressibility, in agreement with the results of the model problem
discussed earlier in this note. Figure 2(c) illustrates the performance of the iterative methods,
showing the divergence of the Gauss–Siedel iterations in the absence of regularization.

In summary, regularization R2 was found to be optimal in the sense of minimal perturba-
tion of the discrete Poisson–Neumann system, but its advantages should be weighed against
the cost of computing the adjoint eigenvector of the null eigenvalue. The ease of implemen-
tation of regularization R1 with an iterative solver makes it a competitive alternative.
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