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The time integration of the equations of incompressible flow using (a) the velocit
pressure formulation in conjunction with the consistent or simplified pressure Pois:
equation, (b) a projection method, or (c) a pressure—correction method, requires solvi
Poisson equation for the pressure or for an auxiliary projection function used to approxir
the pressure subject to the Neumann boundary condition over the solid boundaries o
flow. In the case of the pressure Poisson equation, an inhomogeneous Neumann bout
condition arises by projecting the Navier—Stokes equation normal to the boundaries, and
using the specified boundary conditions for the velocity to simplify the viscous and inert
contributions [1]. In the case of projection or pressure—correction methods, homogeneol
inhomogeneous Neumann boundary conditions for the projection function arise accorc
to the selected boundary conditions for the intermediate velocity computed by integrat
in time the Navier—Stokes equation in the absence of, or using extrapolated values for
pressure gradient [2].

Now, it is well known that when the Neumann boundary condition is required over :
external boundaries of an internal solution domain, the Poisson equation

Vi =g (1)

has a solution for the requisite functidnonly when the compatibility condition, requiring
that the integral of the source functigrover the domain of solution be equal to the net flow
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rate expressed by the boundary integral of the normal derivativie &f satisfied. In the
case of a two-dimensional solution domain in ¥yglane, denoted bip, the compatibility
condition requires

/ g(x. y) dx dy— / qdl, @
D C

whereC is the boundary 0D, g = af/dn = n - V f is the specified normal derivativae,
is the unit vector normal t€ pointing outward, andll is the differential arc length along
C. When the compatibility condition (2) is fulfilled, the Poisson equation (1) has a solutic
that can be determined up to an arbitrary constant. When the compatibility condition is
fulfilled, a solution cannot be found.

The spatial discretization of (1) by finite-difference, finite-volume, and some impleme
tations of the finite-element method, replaces the Poisson equation with a linear algek
system for the vectaw,

A-w=h, (3

where the right-hand side incorporates the source terghand the specified Neumann
boundary conditions. If the numerical discretization is consistent, the nfaigxsingular:

a vectoru with equal elements is an eigenvectorfo€orresponding to the null eigenvalue,
A -u = 0. For system (3) to have a solution, the right-hand side must be orthogonal to
eigenvector of the transpose Afcorresponding to the null eigenvalue, denoted/tand
satisfyingv™ - A = 0, yielding the solvability condition

v .b=0. (4)

Since the matriA is generally nonsymmetric, the eigenvecto@ndv are not necessarily
identicall

The solvability condition (4) is, in fact, the discrete implementation of the compatibilit
condition (2). In this light, the left-hand side of (4) is recognized as the implementation
a numerical integration quadrature pertinent to the areal and line integrals on the left--
right-hand side of (2). The particular nature of this quadrature depends on the structur
the matrixA which is determined by the method selected to discretize the Laplacian on:
right-hand side of (1). This observation reveals an intimate relation between a numer
differention matrix and the singular eigenvector of its transpose with reference to numers
integration.

In practice, because of discretization error, the solvability condition is not always fulfille
and the linear system (3) does not always have a solution. In the majority of fluid dynam
applications, this essential difficulty is overlooked, and a solution is found by iteration usir
for example, the Jacobi, the Gauss—Siedel, or the SOR method. The iterations amou
stepping in time on the borderline of numerical stability based on the unsteady diffusic
reaction equation that emerges by adding the time derivafiygt to the right-hand side of
(2). Itis clear then that if the compatibility condition is not fulfilled, a convergent solutiol
corresponding to the steady state cannot be found. In most implementations, only a
iterations are carried out, and a solution of unknown accuracy is obtained, as discusse
de Foy and Dawes [3].

1 The Galerkin finite-element method and the finite-difference method implemented with biased inward diff
ences give a symmetric coefficient matrix at the penalty of reduced accuracy.
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The difficulty has been noted and addressed by two groups of authors. Abdall
Sotiropoulos, and Tafti developed consistent finite-difference discretizations for Cartes
and curvilinear collocated (nonstaggered) grids that ensure the automatic satisfaction o
compatibility condition while producing nonoscillatory solutions that do not suffer fror
odd-even coupling [4-7]. de Foy and Dawes [3] recently developed a consistent discre
tion for finite-volume unstructured grids. Although these methods undoubtedly repres
the optimal approach, the additional amount of necessary work, the possible introduc
of numerical compressibility, and some loss of generality are practical disadvantages.

A second group of authors, dating back to Briley (1974) [8] opted to modify the sour
term of the Poisson equation, but not necessarily the boundary conditions, thereby repla
the linear system (3) with the modified system

A-w=b—ec (5)

wherec is a suitable vector normalized so tldt- ¢ = 1, and the constant on the right-
hand side is adjusted to ensure the satisfaction of the solvability condition [9-11]. Wt
the adjoint eigenvectar is available, we may enforce the solvability condition to compute
e = (v -b)/(vT - ©). In practice, the eigenvectar may be either computed directly or
compiled by inspection in terms of integration quadrature weights. A practical method
computinge without reference tw is discussed by Pozrikidis [12]. When the linear systen
(3) is solved by iteration, the regularization embodied by (5) may be implemented sim,
by shifting all components of the solution vectoby the same amount after each iteration,
so that one arbitrary component is anchored at a fixed value.

In this note, we argue that the optimal way of regularizing the linear system (3) is
projecting the right-hand side onto the orthogonal complement of the adjoint eigenvec
v, thereby obtaining the regularized system

A-w=(-w")-b, (6)

wherev' - v = 1. By construction then, the solvability condition is fulfilled. Comparing
(5) and (6), we identify the otherwise arbitrary veatarith v, and the constart with the
projectionv’ - b. The regularization expressed by (6) amounts to uniformly perturbing tt
source term in the Poisson equation as well as the boundary conditions in a specific w
To investigate the performance of the method based on (6), we consider the solutio
Poisson’s equation in a rectangular domain confined betweenx < a and O< y < b,
where the source term is given by
82

S (1—e??) (1—e™?), @)

1
s — — e—(X-H’)/lS
g y) = + o

wheres is a specified length, and the homogeneous Neumann condition is required aro
the sides. The source tegnwas designed so that the functifris dimensionless, and the in-
tegral ofg over the solution domain vanishes so that the compatibility condition is satisfies
The solution domain was discretized into a unifoNnx M Cartesian grid, and the
Laplacian was approximated using the five-point centered difference formula. In one imj
mentation, termed 11, phantom nodes are introduced to approximate the Neumann bour
condition using centered differences, and the Poisson equation is applied at both the
rior and boundary nodes. In a second implementation, termed 12, the Neumann boun
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condition is implemented using second-order, one-sided differences biased toward the
terior, and the Poisson equation is applied only at the interior nodes. In both cases,
difference equations expressing the Neumann boundary condition are combined with
finite-difference approximation of the Laplacian at the boundary or near-boundary no
to produce a modified five-point formula and a suitable right-hand side. The ndatsix
nonsymmetric in both implementations.

To simplify the nomenclature, we identify regularization done with uniform perturbatio
in the source term alone as R1, and regularization doneanviths as R2. Computations
showed that wheiN = M = 16, § = a, anda = b, the projection distance for cases
I1-R1 and 11-R2 is, respectively, equal+d.728 x 107> and—1.678 x 10~°. The corre-
sponding values for cases 12-R1 and 12-R2 a@®%& 10-° and 683 x 10°°. These results
confirm that regularization R2 minimizes the projection distancand may therefore be
endowed with the qualifier “optimal.” Figure 1(a) shows the solution obtained with meth
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FIG. 1. (a) Solution of the Poisson—-Neumann problem discussed in the text. (b) Effect of regularization
the convergence of the Gauss—Siedel iterations; the thick lines are for discretization 11, and the thin lines ar
discretization 12; the solid, dashed, and long-dashed lines correspond, respectively, to no-regularization, R1
R2; the dashed and long-dashed lines are virtually indistinguishable.
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11-R2 for § = 0.5a, anda = b. The corresponding solution obtained with R1 is virtually
indistinguishable.

To illustrate the effect of regularization on the convergence of an iterative method
solving the Poisson equation, in Fig. 1(b) we plot the maximum correctioh against
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FIG.2. (a)Instantaneous streamline pattern of flow in a square cavity driven by a translating lid with sinusoi
velocity distribution at Reynolds humbée= 1.0; (b) corresponding distribution of the projection function
approximating the pressure. (c) Effect of regularization on the convergence of Gauss—Siedel iterations; the
dashed, and long-dashed lines correspond, respectively, to no-regularization, regularization R1, and regulari:
R2; the dashed and long-dashed lines are virtually indistinguishable.
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the number of iterations on a linear-log scale corresponding to Fig. 1(a). The upde
are done using the Gauss—Siedel method starting from the null initial state. Note that
iterations rely on the Neumann boundary conditions implemented in the finite-differer
matrix for convergence. The thick lines in Fig. 1(b) correspond to discretization 11, a
the thin lines correspond to discretization 12; the solid, dashed, and long-dashed li
correspond, respectively, to no-regularization, regularization R1, and regularization R2; r
that the dashed and long-dashed lines are virtually indistinguishable. The results illust
the divergence of the iterations in the absence of regularization, and reveal nearly iden
performances for R1 and R2.

To further illustrate the performance of the method, we consider flow in a square cav
driven by a moving lid with a sinusoidal velocity distribution at Reynolds nunites
UL/v =1, whereU is the maximum lid velocity occurring at the mid-plarie,is the
vcavity side length, and is the kinematic viscosity. The evolution of the flow is computec
using a projection method on a nonstaggered grid, with the convection—diffusion st
treated implicitly by the Crank—Nicolson method. The projection function is computed |
solving the Poisson equation with homogeneous Neumann boundary conditions over
cavity walls using implementation 11 [12]. The numerical method is discussed in det
in [13]. Figure 2(a) shows the instantaneous velocity vector field at dimensionless ti
f =tU/L = 0.4825 and Fig. 2(b) shows the corresponding distribution of the projectio
functionwhichis nearly identical tothe pressure. Regularization R1 requites 0.0056Q
and regularization R2 requires the lower value- —0.00544 thus introducing a lesser
amount of numerical compressibility, in agreement with the results of the model proble
discussed earlier inthis note. Figure 2(c) illustrates the performance of the iterative meth
showing the divergence of the Gauss—Siedel iterations in the absence of regularizatior

In summary, regularization R2 was found to be optimal in the sense of minimal perturt
tion of the discrete Poisson—Neumann system, but its advantages should be weighed ac
the cost of computing the adjoint eigenvector of the null eigenvalue. The ease of implem
tation of regularization R1 with an iterative solver makes it a competitive alternative.
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